Chuqi Wang

+86-13991875399 | chuqiwang131@outlook.com

RESEARCH INTERESTS

Statistical methods and applications, Bayesian Statistics, causal inference, with a focus on health-related problems, including mental health, environmental issues, food safety, public health, and other related areas. I am particularly motivated to explore statistical methods in interdisciplinary research, such as personalized medicine and mobile health.

EDUCATION

University of California, Irvine

Master of Data Science

- GPA: 3.97/4.0
- Relevant Courses: Databases & Data Management, Probability & Statistical Theory, Statistical Methods, Bayesian
 Data Analysis

McGill University

Bachelor of Science in Statistics

- GPA: 3.56/4.0
- Relevant Courses: Algorithm & Data Structures, Advanced Calculus, Algebra & Analysis, Statistical Learning, Mathematical Statistics, Generalized Linear Models

PUBLICATION

- Wang, C. (2023, January). A REVIEW on 3D convolutional neural network. In 2023 IEEE 3rd International Conference on Power, Electronics and Computer Applications (ICPECA) (pp. 1204-1208). IEEE.
- Zhang, L., Cai, W., Liu, Z., Yang, Z., Dai, W., Liao, Y., ... & Chen, Y. (2023). Fineval: A chinese financial domain knowledge evaluation benchmark for large language models. arXiv preprint arXiv:2308.09975. (Accepted by NAACL 2025)

EXPERIENCE

PFAS Contamination Data Analysis Project

- Collected and processed 2.5 million PFAS-related drinking water quality records from public data sources across all 50 U.S. states.
- Conducted spatial and statistical analysis using Python to identify regional trends in PFAS contamination.
- Reviewed academic literature and applied statistical learning methods to support predictive research and contribute to a collaborative publication.

Language Model Evaluation Research

- Conducted academic literature reviews and collected domain-specific datasets to support a survey study on financial large language models (LLMs).
- Evaluated the performance of 5 closed-sourced models across various reasoning and comprehension tasks using a FinEval benchmark.
- Co-authored a paper on the FinEval benchmark, contributing data presentation through extensive tables and figures formatted in LAT_FX.

PROJECTS

Stroke Prediction Using Bayesian Logistic Regression

- Developed a Bayesian logistic regression model using the rstan package in R, fitted with 2000 iterations and 4 Markov chains via Markov Chain Monte Carlo (MCMC), to predict stroke occurrence based on 5110 patients' demographic, medical, and lifestyle data. Achieved a 95.2% test accuracy and improved model sensitivity through decision threshold adjustment.
- Performed data preprocessing and exploratory data analysis (EDA) using dplyr and ggplot, and applied diagnostic tools like Bulk ESS, Tail ESS, and trace plots to ensure model convergence and reliability.

SKILLS

Programming Languages:	Python, R, Java, SQL
Frameworks & Tools:	Jupyter, SciKit-Learn, TensorFlow, Tableau, LAT_EX
Language Abilities:	Chinese, English

Irvine, CA, USA Sept. 2023 – Dec. 2024

Montreal, QC, Canada Sept. 2018 – May 2022

Jun. 2024 – Feb. 2025

Jun. 2024 – Oct. 2024

Feb. 2024 – Mar. 2024